THE USE OF HEURISTICAL ESTIMATE IN NUMBER THEORY

ALEKSANDER ZUJEV

ABSTRACT. This is an overview of some common uses of heuristics in mathe-
matics, and particularly in number theory. We use heuristical estimates for a
few solved problems - such as Pythagorean triples and Fermat Last Theorem,
and a few still open, such as Mersenne primes, Fermat primes, Euler’s perfect
cuboid. In conclusion, we discuss the place of heuristics in mathematics.

1. INTRODUCTION

The use of heuristical estimates in mathematics is not new. One of the most
known examples is estimate of the density of primes. Long before the Prime Number
Theorem was proven, Dirichlet concluded that the density of primes was ~
This gives the estimate of prime-counting function

T odt
m(x) ~ — = Li(x
@~ | o = Lit@)

which is a better estimate than given by the Prime Number Theorem

Inn-*

x
m(z) ~ e

Caldwell [1] studies in detail the use of heuristics in various problems related to
the prime numbers.

We do not go into such detail with relation to the primes. Instead, we consider
the use of heuristics not only in the problems related to the prime numbers, but
also to other problems in number theory.

The purpose of this paper is not to develop new techniques of using heuristics,
but rather overview its known uses, and the place of heuristic estimates in mathe-
matics. In the examples used, we don’t try to obtain new more precise estimates;
but rather make the examples as simple as possible, for better illustration.

In the following sections, we will give examples of applications of heuristic
method for some known results, and for some still unknown.

In conclusion, we argue that heuristic estimates, and conjectures based on them
are legitimate tools of mathematics, giving many useful results.

2. USE OF HEURISTIC ESTIMATE FOR SOME KNOWN STATISTICS

In this paper, we use the following two heuristic estimates:
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1. The probability that an arbitrary positive integer n is a prime number is
1
" lnn
2. The probability that an arbitrary positive integer n is a perfect power of m is

1

m—1

mn m
In this section, we consider some known results, and compare them to heuristic
estimates. It is a ”postdiction”, useful, even necessary to estimate how good is a
used technique, before trying to apply it for new uses. Like in physics, where a new

~

theory first must satisfy the old results, before predicting new results.

2.1. The number of Pythagorean triangles of hypotenuse less than a given
magnitude.

The problem of Pythagorean triangles is completely solved by Euclid. We know a
generating formula for the sides of all Pythagorean triangles, and that there is an
infinite number of such triangles.

Suppose we don’t know the general formula for the sides of Pythagorean trian-
gles, and instead we will count them heuristically. Let a, b be positive integers such
that a +b% < R2. Suppose a? +b? = ¢? for some integer c. An integer n is a perfect
square with probability ~ ﬁ So a,b are catheti of a Pythagorean triangle with

probability ~ Nﬁ’ Then the number of Pythagorean triples with ¢ < R is

1
aQerZ"<R2 2va? +b?

~ JR W—ri dr
0o 2 2r
TR
4
And we should divide by 2, not to count triples with a, b interchanged:
TR
8
So
# triples w
R 8

Now let us recall the formula for Pythagorean triples
(a,b,¢) = k(m?* —n?,2mn, m? + n?),

m > n, ged(m,n) = 1, and not both m,n odd. We will count them using for-
mula from Mathworld [2] for the number of possible primitive or nonprimitive right
triangles having s as a hypotenuse:

H(s) = ¢lra(s?) — 4
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(The number of Pythagorean triples with ¢ < R) / R:

R | (number of triples)/R
102 0.52
103 0.881
10% 1.2471
10° 1.61436
10° 1.98064

The actual (number of triples)/R does not match our heuristic estimate §; seems
it goes to infinity with n.

Our mistake was that we didn’t take into account that if (a, b, ¢) is a Pythagorean
triple, then so is (ka, kb, kc), where k is a positive integer. Taking it into account,
we come with a formula (omitting derivation)

(# triples) ~ C(RInR — R)
We then have the following estimate for C"

R | (RIn R — R)/(actual # triples)
102 6.93302
103 6.70574
10* 6.58355
10° 6.51213
108 6.47038

The ratio seems to be converging to a constant. We then have a formula
(# triples) ~ C(RInR — R)

where we will leave the constant C' without derivation. So we found a heuris-
tical formula, which gives a good approximation for the number of Pythagorean
triples with ¢ < R. Also from this formula follows a conjecture that the number of
Pythagorean triples is infinite.

2.2. Fermat’s Last Theorem. There are no positive integers a, b, ¢, and integers
n >= 3, such that a™ + b" = ™.

Let us give a heuristic estimate of the number of quadruplets (a, b, ¢, n) such that
a”™ + b"™ = ¢". The probability that k is a perfect nth power is ~ —i—. Then the

nk™n
number of triples (a, b, n) such that a™ + b" is a perfect nth power, is

fabm) ~ Y ——

a>2052,nz4 (@™ + ")

JJJ‘ da db dn
n(a™ + b”)"T_1
a=2,b=2,n>4

= 0.05022
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We used a,b = 2, instead of a,b > 1, because by Catalan’s conjecture / Mihailescu
theorem, it cannot be that a™ + 1 = ¢™ (or it can be shown by elementary means).
We used n > 4, because for n = 3, the theorem was proven by Euler. We obtained
that the expected number of such triples is ~ 0.05, which is consistent with the
fact that there are none.

3. USE OF HEURISTIC ESTIMATE FOR SOME UNKNOWN STATISTICS

In this section, we consider some open problems, and application of heuristic

estimate to them.

3.1. Primality of polynomials. The most famous example is a® + 1. It is still
unknown if it is prime at infinite number of a’s. Hardy and Littlewood state so in
their Conjecture E [3].

If the probability that a? + 1 is a prime is ~

such that a? + 1 is a prime, is

J‘flj
1

da
In(a? + 1)

Comparison of used heuristics with actual numbers:

1
In(a?+1)°

then the number of a < =

x | number of primes a® + 1, a < z S‘f ln(jfaﬂ) relative error | Conjecture E
102 19 15.37 -0.191 15
103 112 89.11 -0.2044 99
104 841 623.38 -0.2588 745
10° 6656 4815.21 -0.2766 5962
106 54110 39314.1 -0.2734 49680
107 456362 332459. -0.2715 425826

This is a reasonably good estimate. Not as good as Hardy and Littlewood esti-

mate; but even our rough estimate gives a good qualitative agreement. The con-
jecture is that there is an infinite number of primes a?+1, but it is so far not proven.

Similarly we study a polynomial a® + 2. Our heuristic estimate is that the num-

. 3 . T
ber of primes a° +2, a < x is ~ Sl In(

da

TR

x | number of primes a® +2, a <z | {] m(j’%z) relative error
102 10 10.29 0.029
103 74 59.45 -0.1966
104 520 415.63 -0.2007
10° 4059 3210.18 -0.2091
108 33795 26209.4 -0.2245

Again, these are reasonably close results.

It might be reasonable to conjecture, that any non-reducible polynomial with

integer coeflicients p(a) has probability of its value being a prime number ~

1
Inp(a)*
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3.2. Mersenne primes. A Mersenne number is 2P — 1, where p is a prime.
The probability that a number 2* — 1 is a prime is ~ m o~ ﬁ The
number of Mersenne primes < n is

Z 1 N loin 1 N Inlnn
2k —1) ~
ok Ten In(2k-1) & kn2 In2

For n = 1000000, there are 33 Mersenne primes, while the sum is 19.10. We can
call it a reasonably good estimate. The sum is infinite, so the conjecture is that

there are an infinite number of Mersenne primes.

3.3. Fermat primes. A Fermat number is F} = 22" 4 1.

The probability that a number Fj, is a prime is ~ - (221,€ =y X 5% }n 5- The number

of Fermat primes < n is

1 n 1
- 2 ln(22k+1)%22kln2

22% 41<n k=1

In difference to Mersenne primes, the sum is finite; therefore the conjecture is that
there are only a finite number of Fermat primes. Fy, ..., Fy are prime; it is now
known that F} are composite for 5 < k < 32. The expected number of Fermat
primes after Fj3s is

i 1 1

~ k = 932159’

it 2FIn2  2%21n2

a very small number. The conjecture is therefore that there are no more Fermat

primes.

3.4. Twin primes. It is still unknown if there are an infinite number of twin
primes. Yitang Zhang [4] came close to it, proving that exists some N less than 70
million, such that there are infinitely many pairs of primes that differ by N. Let
us estimate heuristically the number of twin primes less than a given magniude.
The probability that k is a prime is ~ ﬁ, and the probability that k£ + 2 is a
prime is ~ m Then the probability that both k& and k& + 2 are primes is
~ ﬁ m A ﬁ (we are being very rough here; if k is a prime, than the
probability that k£ + 2 is a prime is >~ m) Then the expected number of
primes less than n is

S| " 9 . E " ) n
~ ~ dkIn“k = |Li(k) — — ~L -
I;anzk L " [ i(k) lnkj],€2 i(n) Inn

The Hardy-Littlewood estimate for the number of twin primes

T dt
~ 2C —
2 (17) 2 9 1n2 t
where

1
Cy = H [1 — (10—1)2] ~ 0.6601618158468695
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A few first values:

n m2(n) y lffk Relative error | Hardy-Litlewood
103 35 34.69 -0.009 46.21
10* 205 162.24 -0.209 270.67
10° 1224 945.76 -0.227 1616.08
10° 8169 6246.98 -0.235 10785.7
107 58980 44499.6 -0.246 58753.8
108 440312 333530 -0.243 440368
109 3424506 2594294 -0.242 3425308

106 | 10304195697298 | 7804293059026 -0.243 | 10304192554496

The Hardy-Littlewood estimate is asymptotically very good. Our simple formula
is not anywhere as good, but a relative error under 0.25 is good for a qualitative
estimate.

3.5. Andrica’s conjecture. [5] It says about the gaps between primes:

Prn+1 — /Pn < 1 for all n

For the inequality not to hold, the gap between p,, and p,41 must be

A= Dn+1 — Pn = vVPn+1 + vV DPn

so that A consecutive numbers are not prime; the probability of this is
()
~ (1=
Inp,
The probability that the inequality holds is

( 1 )
~l=1{1=
Inp,

The probability that the conjecture holds is

~H 1—(1—1 ) ~ 0.57969
n=1 N Pn

Considering that the conjecture was verified for n up to 1.3 - 10'6, we need to
calculate the product starting with this large n, which gives the value very close
to 1. So by heuristic estimate, Andrica’s conjecture with high probability must be
true.

3.6. Euler’s perfect cuboid. [7]

It is a cuboid with integer sides, and integer all three face diagonals, and space
diagonal. If the sides are a, b, c, then a® + b2, a® + 2, b% + 2, and a® + b% + c? are
perfect squares. So far, there are no known perfect cuboids, and it is not proven
that they do not exist. Let us give heuristic estimate of the total number of perfect
cuboids. The probabilities that a? 4+ b?, a® + 2, b + ¢, a® + b + ¢? are perfect
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squares, are respectively
1 1 1 1
27/aZ + 027 24/a2 + 27 22 + 2 22 + b2 + 2
The total number of perfect cuboids
0
1 1 1 1
erfect cuboids) ~
#p ) 2 2v/a? + b2 2¢/a2 + 2 2402 + 2 2¢/a2 + b2 + 2

a,b,c=1

1 1 1 1
~ JJJ da db dc
2va2 + b2 2v/a2 + 2 24/b2 + 2 2v/a? + b2 + 2

a,b,c=1

= 0.139923

If we exclude duplicates, obtained by interchanging a,b,c, we must divide this
number by 6
#(perfect cuboids) ~ 0.0233205

Presumably, the problem was tested for small a,b,c, let us say for a,b,c < 100.
Then if we count for a > 100,b,c > 1, then

#(perfect cuboids) ~ 0.00195175

The expected number of perfect cuboids is quite small. So our conjecture is that
there are no perfect cuboids.

4. CONCLUSION

In 1900 Hilbert posed a set of problems, among them being tenth problem: Find
a general algorithm which, for any given Diophantine equation, can decide whether
the equation has a solution with all unknowns taking integer values.

The Hilbert’s tenth problem is now solved, negatively: there is no such common
algorithm.

Many open problems in mathematics deal with what are Diophantine sets. The
set of Mersenne primes, and the set of Fermat primes are Diophantine sets. So far
it is unknowh if these sets are finite, or infinite. It is conceivable, that there is no
way to prove them to be finite, or infinite. All we may ever have are conjectures:
that the set of Mersenne primes is infinite, and the set of Fermat primes is finite.

Or consider ((n) for n odd, n = 3. Apéry proved that ((3) is irrational [6]. Do
we expect that for every n = 5,7,9, ... there will be discovered some ingenious proof
of irrationality of {(n)? Maybe for some n such proofs don’t exist, or will never
be discovered. Then we will have to be satisfied with conjecture: {(n) is irrational
for n odd. And similar question is about transcendentality. We don’t even know if
¢(3) is transcendental, let alone all the rest of {(n) for n odd, n = 3.

Out of infinite number of current, and future problems in mathematics, some
may prove to be unsolvable; certainly some will remain unsolved for a long time.
But they still may have workable conjectures, based on heuristics.

In conclusion, heuristics is, not just a temporary hack, used until the proof is
found. Heuristics is a legal and important tool in mathematics.
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