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Abstract

We give a new appraisal of the function ∆(x) and its zeroes in the equation f (x) = g(x) + ∆(x) where

f (x) =
∑

n∈Z 2n x2n

and g(x) = 1/((log 2)(log(1/x))).
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1. Introduction

Consider the bilateral infinite series that converges in the unit disc |x| < 1,

f (x) =
∑

n∈Z

2nx2n

(1.1)
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Next also for |x| < 1, consider the function,

g(x) =
1

log 2 log(1/x)
(1.2)

Ramanujan, in his theory of prime numbers in his pre-Cambridge days, seemed

to believe that for all real 0 < x < 1, f (x) = g(x). In Hardy’s famous book on

Ramanujan [2], we can form a view that Ramanujan was familiar with the Euler-

McLaurin summation formula from the Carr Synopsis book he referred to constantly,

and that this formula omitted the oscillating term ∆(x). As a result, Ramanujan inferred
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many things about the distribution of prime numbers as if there were no analytic theory

introduced by Riemann in his landmark paper of 1859 which put the now-named

Riemann Hypothesis, and gave the first proof of the Riemann zeta functional equation.

Using contour integration and the residue theorem, the reality is that

f (x) = g(x) + ∆(x), (1.3)

where ∆(x) oscillates around zero, and the amplitude of the oscillations only are

noticeable around the third or fourth decimal place. Indeed, both f (x) and g(x) satisfy

the functional equation 2 f (x2) = f (x), and f (x) = g(x) approximately to 3 or 4 decimal

places. The ∆(x) oscillations become âĂIJmore wrigglyâĂİ as x approaches 1 near

itâĂŹs limiting boundary value of convergence. G H Hardy was able to explain to

Ramanujan that ∆(x) is an oscillating periodic function of log(log(1/x)). The correct

formula corresponding to (1.3) is for |x| < 1,

∑

2k x2k

=
1

log 2 log(1/x)















1 −
∑′

Γ

(

1 +
2kiπ

log 2

) (

log

(

1

x

))−2kiπ/ log 2














, (1.4)

with the sum
∑

over all integers k, and the sum
∑′ over all nonzero integers k.

The problem is to locate the zeroes of ∆(x), and so find where (1.3) above becomes

f (x) = g(x).

2. Approximation with self-similar oscillating function

2.1. Function ∆0(x). At x close to 1, log(1/x) ≈ (1 − x), and

∆(x) =
1

log 2 log(1/x)

∑′

Γ

(

1 +
2kiπ

log 2

)

(log(1/x))−2kiπ/ log 2 ≈ (2.1)

∆0(x) =
1

log 2

∑′

Γ

(

1 +
2kiπ

log 2

)

(1 − x)−1−2kiπ/ log 2 (2.2)

∆0(x) is a self-similar function, such that ∆0((x + 1)/2) = 2∆0(x). As x approaches 1,

period of oscillations of ∆0(x) exponentially decreases, and its amplitude exponentially

increases. Fig. (1) shows the plot of ∆0(x). Due to such periodicity of ∆0(x), it is

enough to study this function at any interval [x, (x + 1)/2] for complete knowledge of

the function. The function ∆0(x) is dominated by the largest (k = ±1) terms of the sum

(2.2), and these two terms add to a function of the form

b

1 − x
cos

(

log(1 − x)
2π

log 2
+ φ

)

. (2.3)

It is sinusoide, which get squeezed horizontally as x approaches 1, and get stretched

vertically.

We can study and write more about the function ∆0(x) if needed. In the paper

by Campbell [1] he refers to an ingenious approach to finding zeroes of a similar
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Figure 1. (Color online) Plot of ∆0(x). As x approaches 1, with every oscillation, frequency of oscillations
of ∆0(x) increases 2 times, and its amplitude increases 2 times.

Figure 2. (Color online) Plots of ∆0(x) and ∆(x) at intervals [0.2, 1] (left) and [0.95, 1] (right). As x
approaches 1, ∆0(x) and ∆(x) converge.

oscillating function examined in a study by Mahler [3], which may be applicable for

the functions in our current paper.

Of particular interest to us are zeroes of ∆0(x). The first zero of ∆0(x) is

x0 ≈ 0.23628629. All consecutive zeroes are given by

xn = 1 −
1 − x0

2n/2
. (2.4)

2.2. Approximation of ∆(x) by ∆0(x). How well is ∆(x) approximated by ∆0(x)?

Fig. (2) shows the plots of both ∆0(x) and ∆(x). At smaller x, ∆0(x) and ∆(x) differ

considerably, but as x approaches 1, ∆0(x) and ∆(x) converge.

2.2.1. Numerical estimates. A few first zeroes of ∆(x) and ∆0(x), and relative error

of approximation, given by |((zero of ∆(x)) - (zero of ∆0(x)))/(1 - (zero of ∆(x)))| is

shown in Table (1).

As x approaches 1, the relative error goes to zero. The estimate of relative error

can be given comparing Taylor series expansion for ∆(x) and ∆0(x). If xz is a zero of
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zero of ∆(x) zero of ∆0(x) relative error

0.4659328665 0.2362862900 0.4299957

0.5827324804 0.4599728568 0.2941988

0.6825927537 0.6181431450 0.2030502

0.7633691635 0.7299864284 0.1410752

0.8261917175 0.8090715725 0.0985002

0.8737099995 0.8649932142 0.0690220

0.9089508885 0.9045357863 0.0484914

0.9347245581 0.9324966071 0.0341315

0.9533891590 0.9522678931 0.0240559

0.9668115422 0.9662483035 0.0169709

0.9764164885 0.9761339466 0.0119805

0.9832657536 0.9831241518 0.0084618

0.9881378894 0.9880669733 0.0059784

0.9915975764 0.9915620759 0.0042250

0.9940512509 0.9940334866 0.0029862

0.9957899259 0.9957810379 0.0021111

0.9970211888 0.9970167433 0.0014924

0.9978927427 0.9978905190 0.0010552

0.9985094836 0.9985083717 0.0007460

0.9989458157 0.9989452595 0.0005276

0.9992544639 0.9992541858 0.0003730

0.9994727689 0.9994726297 0.0002639

0.9996271624 0.9996270929 0.0001865

0.9997363497 0.9997363149 0.0001319

0.9998135638 0.9998135465 0.0000930

0.9998681661 0.9998681574 0.0000663

0.9999067776 0.9999067732 0.0000469

0.9999340809 0.9999340787 0.0000334

0.9999533877 0.9999533866 0.0000236

0.9999670399 0.9999670394 0.0000154

0.9999766936 0.9999766933 0.0000120

0.9999835198 0.9999835197 0.0000071

0.9999883467 0.9999883467 0.0000018

Table 1. Zeroes of ∆(x) and ∆0(x).

∆(x), and xz0 is corresponding zero of ∆0(x), then

(1 − xz0) ≈ (1 − xz) +
1

2
(1 − xz)

2 +
1

3
(1 − xz)

3, (2.5)
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or

(1 − xz) ≈ (1 − xz0) −
1

2
(1 − xz0)2 −

1

3
(1 − xz0)3. (2.6)

3. Arbitrary a

The results of the previous section are applicable to the equation with an arbitrary

a instead of 2. Consider the bilateral infinite series that converges for real 0 < x < 1,

f (x) =
∑

n∈Z

anxan

(3.1)

= ... + a10xa10

+ a9xa9

+ a8xa8

+ a7xa7

+ a6xa6

+ a5xa5

+ a4xa4

+a3xa3

+ a2xa2

+ axa + x +
x1/a

a
+

x1/a2

a2
+

x1/a3

a3
+

x1/a4

a4

+
x1/a5

a5
+

x1/a6

a6
+

x1/a7

a7
+

x1/a8

a8

+
x1/a9

a9
+

x1/a10

a10
+ ...

Next consider the function given by real 0 < x < 1,

g(x) =
1

((log a) log(1/x))
. (3.2)

f (x) = g(x) + ∆(x), (3.3)

where ∆(x) oscillates around zero, and the amplitude of the oscillations only are

noticeable around the third or fourth decimal place. Both f (x) and g(x) satisfy the

functional equation a f (x2) = f (x), and f (x) = g(x) approximately to 3 or 4 decimal

places. The ∆(x) oscillations become âĂIJmore wrigglyâĂİ as x approaches 1 near

itâĂŹs limiting boundary value of convergence. ∆(x) is an oscillating periodic function

of log(log(1/x)). The correct formula corresponding to (3.3) is for |x| < 1,

∑

ak xak

=
1

((log a)(log(1/x)))















1 −
∑′

Γ

(

1 +
2kiπ

log a

) (

log

(

1

x

))−2kiπ/ log a














, (3.4)

where the sum
∑

is over all integers k, and the sum
∑′ is over all nonzero integers k.

∆(x) may be approximated by

∆0(x) =
1

log a

∑′

Γ

(

1 +
2kiπ

log 2

)

(1 − x)−1−2kiπ/ log a (3.5)

As an example, we consider a = 3. Fig. (3) shows the plots of both ∆0(x) and

∆(x). At smaller x, ∆0(x) and ∆(x) differ considerably, but as x approaches 1, ∆0(x)

and ∆(x) converge.
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Figure 3. (Color online) Plots of ∆0(x) and ∆(x) at intervals [0.2, 1] (left) and [0.95, 1] (right). As x
approaches 1, ∆0(x) and ∆(x) converge.

Zeroes of ∆(x) may be approximated by zeroes of ∆0(x). The first zero of ∆0(x)

can be found by numerically solving equation ∆0(x) = 0. Approximately, taking only

the first terms of the sum,

Γ

(

1 +
2iπ

log a

)

(1 − x)−1−2iπ/ log a + Γ

(

1 −
2iπ

log a

)

(1 − x)−1+2iπ/ log a = 0 (3.6)

x0 ≈ 1 − e

(

π
2
−arg

(

Γ

(

1+ 2πi
log a

)))

log a

−2π (3.7)

All consecutive zeroes are given by

xn = 1 −
1 − x0

an/2
. (3.8)
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