
NOTE ON NON-UNITARY QUANTUM GATES IN QUANTUM

COMPUTING

ALEKSANDER ZUJEV

Abstract. We study possible advantage of using non-unitary quantum gates
in quantum computing. Our particular goal is to investigate the application of

non-unitary quantum gates for solving NP-complete problems. In this note, we
specifically study an example of non-unitary quantum computing, advanced
by Nordin Zakaria.

1. Introduction

Quantum computing, while very promising, didn’t so far quite fulfill its initial
expectations. Most spectacular result in quantum computing is Shor’s algorithm
for integer factoring. But it isn’t proven yet that integer factoring in polynomial
time is impossible by classical computer.

Grover’s algorithm of database search gives square root speed-up. This is very
good improvement - the time of search is proportional to the square root of the
number of entries in database, down from being proportional to the number of
entries in classical search. But the more ambitious goal is time of search polynomial
of the length of search string. Such algorithm could work as a universal problem
solver, and would be used for many applications. E.g., automatic theorem proving:
We can encode any derivation as a sequence of statements, obeying some logical
rules; together, this sequence is a string of characters. We search all such strings
of length N for a string starting with the set-up statements, and ending with the
conclusion statement. If we find such string, then it is our proof. If not, then we’ll
know that the theorem can’t be proved in less or equal to N characters.

There were in the literature various suggestions of extending quantum computing
beyond standard for solving NP-complete problem in polynomial time [?, ?, ?].
Solving NP-complete problem in polynomial time generally in quantum computing
community is considered as probably impossible. But the potential rewards in case
of success are very high - in principle, it may mean universal problem solver, easy
solving of many difficult problems. The problem is worth investigating even if the
perceptive probability of success is low.

Among the more promising directions is using non-unitary gates. Particularly
interesting is the work of Zakaria [?], who suggests search algorithm using non-
unitary gates. The work uses the proposal by Terashima and Ueda [?] of application
of a non-unitary operator as a quantum measurement operator.

The main goal of this project is to study the possibility of practical realization
of non-unitary quantum computing and its application for solving NP-complete
problems.
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2. Application of Non-Unitary Gates in Search Algorithm

2.1. ZTU Search Algorithm. Zakaria[?] suggested an algorithm for quantum
search, using non-unitary quantum gates. The algorithm uses non-unitary gates
constructed by quantum measurement as defined by Terashima and Ueda [?]. We’ll
call it Zakaria-Terashima-Ueda (ZTU) algorithm.

For simplicity, we use N being a power of 2, N = 2n. The heart of the algorithm
is the part which differentiates between one qubit states y = |0〉 and

x =

√

1− 1

N
|0〉+ 1√

N
|1〉.(1)

To achieve this, the algorithm uses non-unitary quantum gate

D =

(

1 −
√
N − 1

0
√
N

)

,(2)

which, applied to the states y and x results respectively in the states |0〉 and |1〉.
D is decomposed using Singular Value Decomposition

D = QV R†,(3)

where Q and R† are unitary, and V is diagonal non-unitary. For large N

V ≈
( √

2N 0
0 1√

2

)

(4)

V is decomposed into a product of matrices Vi, such that their first diagonal element
is less than 2. For large n the number of resulting matrices Vi is m ≈ n+1

2
, and

Vi ≈
(

2 0
0 1

)

(5)

Vi then is normalized to

M0 ≈
(

1 0
0 1

2

)

,(6)

where M0 now is used as measurement operator.
To successfully apply operator D, we need successfully (i.e. with success) apply

measurement M0 m times.

2.2. Quantum Measurement in ZTU Algorithm. Does ZTU algorithm indeed
work in polynomial time? The reason for the doubt is quantum measurement, which
has probability of success less than 1. As a result, while using non-unitary gates
gives speed-up for the search, the measurement gives slow-down. Will the resulting
time of search be polynomial, or due to measurement slow-down, exponential?

If the probability of success of measurement M0 is p, then to get successful m
measurements requires average number of measurements (see Appendix for deriva-

tion) E(nmeas) = 1
1−p

(

1
pm

− 1
)

, and we need to do the procedure for every bit,

n times. If we were doing measurements for every bit for the full N set, the total

number of measurements would be E(nmeas.total) ∼ n
(

1
pm

)

, but we do binary

division, so

E(nmeas.total) ≈
n
∑

i=1

1

1− p

(

1

pmi/n
− 1

)

≈ 1

1− p

1

pm
1

1− pm/n
∼ 1

pm
(7)
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If the probability of success of measurement M0 p is approximately between
(

1
2

)2
= 1

4
and (1)

2
= 1, then for the worst case p = 1

4
, and

E(nmeas.total) ∼ (2)
n
,(8)

which is exponential time. For the best case of p = 1, measurement is always
successful, and E(nmeas.total) ∼ n, so the average time for a random search vector
∼ (2)

n
.

Seems different factorization of V doesn’t much affect average number of mea-
surements. If we increase m twice, m′ = 2m, then

M0 ≈
(

1 0
0 1√

2

)

,(9)

so p changes: p′ =
√
p, and number of measurements

E′(nmeas.total) ∼ (p′)−m′ ∼ E(nmeas.total) ∼ 1

pm
,(10)

the same as in (??).

2.3. Discussion. The reason for the lack of success of solving search in polynomial
time:

The gain by non-unitary operation (amplitude amplification) is nullified by a
loss by reduced probability of success of the operation.

The gain and loss can be both expressed in terms of the coefficients of the
non-unitary matrix, and they match each other. Where computation time was ex-
ponential, ∼ 2an, it remains exponential, ∼ 2bn. There may be an improvement, if
b < a. This improvement may possibly be considerable, but not as good as chang-
ing computation time from exponential to polynomial.

The study of one example is not enough for far reaching conclusions. We need to
do systematic study of different algorithms involving non-unitary quantum gates.
We may expect that either there are some instances of changing computation time
from exponential to polynomial due to the non-unitary gates, or there are none,
in which case it needs to be proven. The third possibility is that the problem is
undecidable.

Appendix A. Derivation of the number of measurements

The problem is equivalent to the following: We have a biased coin, with prob-
abilities of head and tails respectively Pr(H) = p and Pr(T ) = q = 1 − p. How
many flips, X, are required on average to get m of heads (H) in a row?

We are using derivation by David Mitra[?]. For 1 ≤ i ≤ m, let Ti be the event
that the first tail occurs on flip i and let Tm+1 be the event that the first m flips
are all heads. We have conditional expectation E(X|Ti) = i+ E(X), 1 ≤ i ≤ m,
if the first T occurs on flip i, then it’s as if we are restarting: the expected number
of flips to obtain m H in a row would be i plus the original expected number of
flips. E(X|Tm+1) = m,
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E(X) =

m+1
∑

i=1

P (Ti)E(X|Ti)

=

m
∑

i=1

pi−1q
(

i+ E(X)
)

+ pmm

=
1− pm −mpmq

q
+ (1− pm)E(x) + pmm(11)

Solving for E(X):

E(X) =
1

q

(

1

pm
− 1

)

(12)
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