

UCDAVIS

Aleksander Zujev Journal Club talk 2-02-2007

Introduction to Spin Hall Effect

J. E. Hirsch Department of Physics, University of California, San Diego PRL 83, 1834 (1999)

Outline

• Hall effect

• Anomalous Hall effect

• Spin Hall effect from Anomalous Hall effect

• Detection of Spin Hall effect

• Quantum Hall effect

Hall effect

Electric current in magnetic field $\vec{B} \perp \vec{j}$ $\Rightarrow \vec{E}_H \perp \vec{j}, \vec{B}$

$$E_H = \rho_H j$$

$$\rho_H = R_0 B$$

 R_0 - Hall coefficient. Easy to show: $R_0 = \frac{1}{en}$

Math

Electron moving in $\vec{B} \perp \vec{v}$. Equilibrium between the forces:

$$evB = eE$$

$$j = nev$$

$$\Rightarrow E = j\frac{1}{ne}B$$

$$\rho_H = \frac{E}{j} = \frac{1}{ne}B$$

Resistivity tensor (2D, $\vec{B} \parallel \hat{z}$):

$$\rho = \begin{bmatrix} \rho_0 & \rho_H \\ -\rho_H & \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 & B/ne \\ -B/ne & \rho_0 \end{bmatrix}$$

Anomalous Hall effect

Electric current in magnetic field $\vec{B} \perp \vec{j}$ $\Rightarrow \vec{E}_H \perp \vec{j}, \vec{B}$ $E_H = \rho_H j$ $\rho_H = R_0 B + 4\pi R_s M$ M - magnetization R_s - anomalous Hall coefficient

Origin: A few mechanisms proposed: skew scattering by impurities and phonons, "side jump" mechanism, other.

Exists in FM $\Rightarrow e^-$'s carrying spin and associated magnetic moment experience transverse force to their movement.

Spin Hall effect

No magnetization - e.g. paramagnet.

But scattering mechanisms causing Anomalous Hall effect exist:

 e_{\uparrow}^{-} scatter preferentially in one direction, e_{\downarrow}^{-} in another.

Spin Hall effect

How to detect?

Hall effect:

Connect y = 0 and y = L:

$$e^-$$
 go $0 \rightarrow L$:

Electric current.

Spin Hall effect:

Connect y = 0 and y = L:

$$e_{\uparrow}^{-}$$
 go $0 \rightarrow L$
 e_{\downarrow}^{-} go $L \rightarrow 0$:

$$e_{\perp}^{-}$$
 go $L \rightarrow 0$:

Spin current.

But no electric current.

How to detect

Connect y = 0 and y = L with another slab of the same material:

 e_{\uparrow}^- go $0 \rightarrow L$ and scatter to their left.

 e_{\perp}^{-} go $L \rightarrow 0$ and scatter to their right.

Voltage between left and right edges of the small slab!

How to detect

Side view

Math

Consider only e_{\uparrow}^- 's. "Magnetization" due to e_{\uparrow}^- : $M = n_{\uparrow}\mu_B$ Anomalous Hall voltage:

$$V_H = 4\pi R_s L j_x n_{\uparrow} \mu_B.$$

$$V_{SH} = V_H = 2\pi R_s L j_x n \mu_B.$$

Small slab: current for each spin

$$j_{\sigma} = rac{V_{SH}}{
ho L} = rac{2\pi R_s n \mu_B}{
ho}$$

Resulting Spin Hall voltage $V_{SH}^{\sigma} = 4\pi R_s l j_{\sigma} n_{\sigma} \mu_B$

Add voltages from both spins

$$V_{SC} = 8\pi^2 R_s^2 l \frac{(n\mu_B)^2}{\rho} j_x$$

For different materials

$$V_{SC} = 8\pi^2 R_{s1} R_{s2} l \frac{(n\mu_B)^2}{\rho_2} j_x$$

Quantum Hall Effect

Ordinary Hall Effect in 2-D:

$$\vec{B} \parallel \hat{z}$$

Resistivity tensor

$$\rho = \begin{bmatrix} \rho_0 & \rho_H \\ -\rho_H & \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 & B/ne \\ -B/ne & \rho_0 \end{bmatrix}$$

Quantum Hall Effect

Quantum Hall Effect in 2-D: $\vec{B} \parallel \hat{z}$

$$ec{B} \parallel \hat{z}$$

Resistivity tensor

$$\rho = \begin{bmatrix} \rho_0 & \rho_H \\ -\rho_H & \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 & h/ie^2 \\ -h/ie^2 & \rho_0 \end{bmatrix}$$

$$i$$
 - an integer.
$$\rho_H = h/ie^2 \equiv \sigma_H = ie^2/h \; \text{- quantized.}$$

Quantum Hall Effect

Integer quantum Hall effect in a GaAs-GaAlAs heterojunction, $T=30 \mathrm{mK}$. Also diagonal component of resistivity - shows regions of zero resistance corresponding to each QHE plateau.

A Derivation

A plane: 0 < x < L, 0 < y < W.

Landau gauge: $A_x = -yB$, $A_y = 0$.

S.E.:

$$\frac{\hbar^2}{2m} \left[\left(-i \frac{\partial}{\partial x} - \frac{eB}{\hbar} y \right)^2 - \frac{\partial^2}{\partial y^2} \right] \psi = E \psi$$

Trying $\psi = e^{ikx}\phi(y)$:

$$\frac{h\omega_c}{2} \left[-l^2 \frac{\partial^2}{\partial y^2} + \left(\frac{y}{l} - lk \right)^2 \right] \phi = E\phi$$

where $l \equiv (\hbar/eB)^{1/2}$.

- H.O. centered at $y = l^2k \Rightarrow 0 < k < W/l^2$. Solutions are $\phi_{nk}(y) = H_n(y/l - lk)e^{-(y-l^2k)^2/2l^2}$ $E_{nk} = \hbar\omega_c(n+\frac{1}{2})$ - independent of k.

Periodic B.C. on x: $x = 0 \equiv x = L \Rightarrow k = 2\pi p/L$

 \Rightarrow number of states in Landau level $LW/2\pi l^2$, or per unit area $n_B = 1/2\pi l^2 = eB/h$.

If every occupied level is full, then "filling factor"

$$\nu = \frac{n}{n_B}$$

- integer, or

$$n = \nu n_B = \nu \frac{eB}{h}$$

$$\rho_H = \frac{B}{ne} = \frac{h}{\nu e^2}$$