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Fractional Quantum Hall Effect and Quantum Computer
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Hall effect

Electric current in magnetic field Iz ]

Eyg = ,OHj

og = RyB

Ry - Hall coefficient. Easy to show: Ry = i
Hall affect
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Math

Electron moving in B Ll
Equilibrium between the forces:
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Resistivity tensor (2D
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Quantum Hall Effect

Ordinary Hall Effect in 2-D:
B |z
Resistivity tensor
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Quantum Hall Effect

Quantum Hall Effect in 2-D:
B |z
Resistivity tensor
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1 - an Integer.

pg = h/ie? o = 1e’/h - quantized.



Quantum Hall Effect

Integer quantum Hall effect in a GaAs-GaAlAs heterojunc-
tion, T' =30mK. Also diagonal component of resistivity
- shows regions of zero resistance corresponding to each

QHE plateau.
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A Derivation

Aplane: O0<z < L, O<y<W.
Landau gauge: A, = —yB, A, = 0.
S.E.:
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Trying ¢ = e**¢(y):
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where [ = (h/eB)l/Q,
- H.O. centered at y = I’k = 0 < k< W/
Solutions are ¢ni(y) = Hy(y/l — lk)e~ W=k /28



By = hw.(n + %) - independent of .

Periodic BC.onz: t =0 = =L = k=2np/L

= number of states in Landau level LW /2xl?, or per unit
area ng = 1/27wl*> = eB/h.

It every occupied level is full, then "filling factor”

- Integer, or



Fractional Quantum Hall Effect

As in the integer quantum Hall effect, a series of plateaus
forms in the Hall resistance. Each particular values of mag-
netic field corresponds to a filling factor (the ratio of elec-
trons to magnetic flux quanta)

p
V= =
q
where p and q are integers with no common factors.
q - odd
except

DO | 3



Principal series



Theories

e Fractionally-charged quasiparticles (Laughlin): hides in-
teractions by constructing a set of quasiparticles with charge
e* = <.

o Con?lposite Fermions (Jain, and Halperin, Lee and Read):
to hide the interactions, it attaches two (or, in general,
an even number) flux quanta % to each electron, forming
integer-charged quasiparticles called composite fermions.
The fractional states are mapped to the integer QHE. This
makes electrons at a filling factor 1/3, for example, behave
in the same way as at filing factor 1. A remarkable result
is that filling factor 1/2 corresponds to zero magnetic field.

Experiments support this.



Anyons

Fermi-Dirac, Bose-Einstein:

[P11pe > = E[horpy >

Anyons:

P19y > = 6i9|¢2¢1 >



Fractional QHE: Anyons

Laughlin: g QHE:
quasiparticle excitations: anyons:
charge g

statistical angle 6 = g



Fractional QHE: Moore-Read Ptfaflian states

For reasons outside of this review (read: too complicated
for me) g — g QHE is suitable for Quantum Computation,
because its anyons have non-Abelian statistics.

Another possibility g = 12 _ supposedly even better, have

5
braiding statistics that allow universal topological quan-

tum computation.

Gregory Moore, Nicholas Read, Nonabelions in the frac-
tional quantum Hall effect, Nuclear Physics B, 360, Pages

362-396 (1991).
e Excitations: quasiparticles with Non-Abelian statistics.



Braids

Quasiparticles worldlines: Braids. Braid group Bs:
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FIG. | Top: The two elementary braid operations oy and o2 on
three particles. Middle: Here we show ooy = o109, hence the
braid group is Non-Abelian. Bottom: The braid relation (Eq.
TiFaf 108 = Tap A TiTa i |




Requirements for quasiparticles to follow Non-Abelian
statistics

e 1. N-quasiparticle GS is degenerate. For this, quasipar-
ticles must be well separated.

e 2. Interchange of quasiparticles: U transformation, whose
non-Abelian part is determined only by the topology of
braid, and non-topological part is Abelian.

e 3. The only way to make U transform on degenerate GS
space is by braiding.



Topological Quantum Computer

Alexei Kitaev, ”Fault-tolerant quantum computation by
anyons,” arXiv:quant-ph/9707021, Annals Phys. 303 (2003)
2-30

Reason: Any local perturbation has no nontrivial matrix
elements within the ground state subspace. Thus, the sys-
tem is immune from decoherence (Kitaev, 2003).



Topological Quantum Computer

Sankar Das Sarma, Michael Freedman, and Chetan Nayak,
"Topologically Protected Qubits from a Possible Non-Abelian
Fractional Quantum Hall State”, Phys. Rev. Lett. 94,
166802 (2005).

Chetan Nayak|3], Steven H. Simon, Ady Stern, Michael
Freedman, Sankar Das Sarma, ”Non-Abelian Anyons and
Topological Quantum Computation”, http://www.arxiv.org/
2007

Quantum computation:

Initialize the state of qubits;

Perform arbitrary controlled unitary operations on the state;
Measure the state of qubits at the end.



Topological Quantum Computer

Review:
Fabry-Perot interferometer




Topological Quantum Computer
Quantum Hall analog of Fabry-Perot interferometer

FIG. 2 A quantum Hall analog of a Fabry-Perot interferometer.
Cuasiparticles can wnnel from one edge to the other at either of
two point contacts. To lowest order in the tunneling amplitudes, the
bac kscattering probability. and hence the conductance, 1s determined
by the interference between these two processes. The area in the
cell can be vaned by means of a side gate 5 in order to observe an
mterference pattem.



Topological Quantum Computer
Constructing Qubits

FIG. 3 I a third constriction is added between the other two, the cell
15 broken mto two halves, We suppose that there 15 one quasiparticle
(or any odd number) meach half. These two quasiparticles (labeled

1 and 2) form a qubit which can be read by measuring the condue-
tance of the interferometer if there is no backscattering at the middle

constrichion. When a single quasiparticle tunnels from one edge to
the other at the nuddle constriction, a o, or NOT gate is apphiad to

the qubat.




Alternatives to QHE
Topological phases: possibilities:
e Transition metal oxides

e ultra-cold atoms in optical traps:

Use rotation instead of magnetic field to get analog of
QHE.
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